™
A
)
-
<
g
o
T

Carneqie-Mellon University

PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

WILLIAM LARIMER MELLON, FOUNDER

| %
E -

(i

=

L 1

[

[!-

Roproduced b.

NATIONAI TECHNICAL
INFORMATION SERVICE \

Springfield, Va 22151

]
DISCLAIMER NOTICE

i

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF

RAGRY WHICH DO NOT
REPRODUCE LEGIBLY.

Secunty Clussuication

DOCUMENT CONTROL DATA-R&D

certy clas silicarion of tiele, bady of abctract and indeXing annotation nust be enrored wih:en the overall report is classified)

W LN TN G AC TV TN L Uoeparate aathor)

Graduate School of Industrial Administration

28, REFCORT SECURITY CLASSIFICA I

Unclassified

2b, GROUW

Carnegie-Mellon University Not applicable

e

et POR" T.TLE

Generating All the Faces of a Polyhedron

4 LESCETTIVE NOTES (Tvpe of report and inclusive dates)

Management Sciences Research Report June 1971

AL THORNS (First name, middle initial, last name)

Claude-Alain Burdet

€ REPCRT DATE 74. TOTAL NO. OF PAGES 7h. HO. OF RYFS

June 1971 20 4

Ad, T2 TALPCT DR GHWANT NO 98, OCRIGINATOR'*S REFPQORT NUMHERIS?

bNPQO}?:§Z’A'0314’OOO7 Management Sciences Research Report No. 271

NR -47-048

oh. OTHER REPORT NO(S) fdny other numbers that may be assigned
this report)

a4, W.P, 90-70-1

T DSTRIRL TION STATEMENT

This document Las been approved for public release and sale; its distribution
is unilimited.

VUORLTTLEMENTARY NOTES T3 SPONSORING MIL/ITARY ACTIVITY . o
Logistics and Mathematical Statistics Br.
Office of Naval Resaarch

Washington, D, C. 20360

Y AR eAZTT

n
The determination of all the extreme points of a given convex polyhedron P & R
generally requires a substantial amount of computations; this note presents a
conceptually simple algorithm for this purpose. Unlike other methods, the pro?edure
generates only those basic solutions which are extreme points (i.e., only feasible
basic solutiocns),

More generally, this approach is able to gemerate all the faces of any dimension
k (0 k < n), that is all those k-dimensional subpolynedra which lie on the

i boundary of the given polyhedron P,

(PATL 1}

DD *.1473

VA EAR I LVRAREE - [B

Unclassified

Security Classitication

e e

Unclassified

Security Classafication

ME ¢ N#CRDS

L'tir A

LiNg

MO

extreme point programming
non-convex programming
concave programming
integer programming
polyhedral sets

vertex enumeraticn
facial decomposition

degeneracy

O

e

e .

nn ro_u AT narv)

W.P. 90-70-1

Management S:iences Research Report No. 271

CENERATING ALL THE FACES OF A POLYHEDRON
by
P Claude-Alain Burdet

June 1971

This report was prepared as part of the activities of the Management Sciences
Rescarch Group, Carnegie-Mellon University, under Contract N0OO}4-67-A-0314-00C07
NR 047-048 with the Y. S, Office of Naval Research. Reproduction in whole

or in part i3 permitted for any purpose of the U', S, Government.

Management Sciences Research {roup

Graduatc Schocl of Industrial Administration
Carnegie-Mellon University

Pictsburgh, Penngylvania 15213

AS

b oy e T

D

ABSTRACT

The determination of all the extreme points of a given convex
polyhedron PC R" generally requires a substantial amount of
computations; this note presents a conceptually simple algorithm
for this purpose. Unlike other methods, the procedure generates

only those basic solutions which are extreme points (i.e., only

feasihle basic solutions).

More generally, this approach is able to generate all the

faces of any dimension k (0 < k < m) , that is all those

k-dimensional subpolyhedra which lie on the boundary of the given

polyhedron P .

Introduction

Polyhedral sets are the most widely used constrained sets in mathe~
matical programming and they are usually defined by a system of linear
(in)equalities. Im fact, other characterizations of these sets are often

impractical in the convex programming context.

However, as mathematical programmding penetrates into the darker and
less structured areas of non-convex programs (concave programming oy dise
crete (in particular, integer or zero-one) programming, for instance), more

information on the polyhedral set P of feasible solutions is required.

A classical question is that of finding the vertices of P , and seems
very difficult to answer practically in large dimensional vector spaces.

One may also be interested in the complete face structure of P , that is,
in finding a characterization of each k-dimensional face F of P , for

0 <k<a. (Clearly the quest for vertices is a special case of the latter,
since thay are O-dimensional faces of P,)

This paper presents a simple approach to the determination of the face
structure of a polyhedron. An algorithm is presented, which generates all
the desired information concerning the complete lattice of faces of a poly-
hedron ? , in the form of a non-reduadant facial arborescence.

Som: applications are mentioned and described in general terms in the

last seczion. One particular case is that of general quadratic programming,

which is the object of the follow-up paper [4].

Section 1, Minimal Sets.
1.1 Consider the polyhedral set P , defined by the following system of
inequalities

x, =a, + L a, x, >0, 1i¢eM L
i fo " ey 1373

with non-basic index set N = {1,2,...,n}C M = {1,2,...,n,nt1,...,0¢m} .

- The matrix A contains an n-byen ideatity submatrix, which
corresponds to the constraints xj.z 0, jeNcM
- For simplicity, we only consider here the case where P

has full dimension n and is bounded.
Definition: A subset 1C M is called minimal if
{x_!xigo, ¥i € I}C{x}xizo, VieM} =P

and for every i0 e I , there exists a point x such that

2. < ad x, > - {i 2
i 0 and x>0, ¥iel \Lo} (2)

Property l: The constraints x, >0, ¥1i ¢ (M -~ I) are redundant

and one has

b= (x|x, 20, ¥ie I} (3)

2.

Property 2: For every 10 e 1 , the hyperplane x, = 0 contains a

(o]
(n-1)-dimensional facet of P .
Proofs:
to 1: By definition one has
Vqe (M-1): %, 20, ¥xe {x| x; 20,¥iel] g.e.d.

¢)
to 2: The set D ='ix | x, 20,¥iel - {io} [contains a point
~

% with %X, < 0 , because i, e 1 . Furthermore there exists

a point X in the interior of D with ii = 0 ; such a point
)

may be constructed by choosing an arbitrary interior point
% e Int(P) and intersecting the line % - x with the plane

x, = 0 , yielding % . Since PC D one has % ¢ Int(D)
[s)

due to the convexity of D , i.e. % = (l-p) X +p x , with
0<p<1l. Moreover, since PC DC R" , the polyhedral set
D has the same dimension n as the set P .

Take now a (small enough) open n-dimensional ball E(X) < Int(D)

v

containing % , and consider the intersection
B” = {x ¢ B(X) | *, =0 } : by conmstruction B is a
o

(n~1)-dimensional open ball C D , and it lies in the inter-

section of P with the hyperplane X, = 0, i.e. in a facet of
0

P , which has dimension (n-1) . q.e.d.

1.2 The concept of minimal set of inequalities I provides for the
basic tool of an algorithm for the face decomposition of P ; 1
can be obtained by the following:

PROCEDURE MIN SET

Give a system of inequalities (1), i.e., a matrix A with (mtm) rows
and (m+l) columns, containing an identity submatrix; the procedure MINSET
determines the minimal set I< M, A primal feasible linear programming
tableau for the system (1) is required to start MINSET. During the exe=-
cution of MINSET, the elements 1o ¢ M are selected ore after the other, 3

and the corresponding row

X, =& 0 + ¥ a; X,
o o jeN od J

is (momentarily) chosen as objective function. Optimization of the following L.P.

Minimize xio, subject to x, >0 , Vi e R - {io} furnishes a minimal
value §i ; the index set R 1is determined by the procedure and satisfies
I < R C?M. I1f ;i < 0 then one has io € I , by definition of the minimal
set T ; if ;i > 0? then the constraint X, > 0 is considered redundant
and is dispode of; the case ;i = 0 i3 trzated separately.

MINSET: 1 Set R =M and I =010 =

2 Choose a basic index 1 ¢ (R - RN N); H
- if R =¢ then STOP!
- if R# @ but RC N, then change the basis (and

the non-basic set N) by choosing a positive pivot

which preserves primal feasibility; if there exists
no such element in the current tableau then replace 1
by I { R and SIOP!

1
3 Set R =R - {r}] and consider the e row

Solve by L.P,

optimizaticn the problem

¥yie RUI)

Minimize xr s Sot.

If the minimal value of

> 0 then go to 2.

R SN

If the minimal value of x = 0, then replace I by I 1) ii }
r o o o

and go to 2.

Replace the I by I U {r} and go to

Because the procedure MINSET will be frequently called in the algorithm
it is well worth noting the following remarks to speed up its execution:

1) In order to minimize the number of pivotal operations, the choice

with the smallest

T 1in Step 2 should correspond to a row

possible number of negative elements

arj <0) .

Suppose that, in the course of the {primal) optimization of

Step 4, a row %

5 and 6, with xg

basic set; then s may be ismediately discarded from the set R.

In the current basis,

criterion of the L.P,

(usually with just

i)

L, with a I >0, ¥j is found in the current
si =

en i ki o WA % £ i 1 s .

the condition asj-z 0 is the optimality

Minimize x_, subject to x, >0, ¥i ¢ ((RU 1) - ish.
3

Thus, one may bypass the minimization of X

Similarly for the column of a non-basic variable xj with j ¢ R,

one may ¢liminate the element J from the set R.

J

min

>
k/akj 0

and go to the steps

basic index (also k = r)

Then j may be eliminated when &4 > 0,

(A particular such case is wnen a, , < 0, Vk).

k3

Proof: The preceeding condition is such that the solution remains feasible

when x, assumes a negative value 0 > xj‘z =d.

3

Let us now show that the procedure MINSET does indeed determine a
minimal set I :
min
(1) By coastruction, every point x ¢ P' = {x | x; 20, ic¢ Imin}
satisfies x, 2 0, ¥L ¢ (M-Imin);
heace, P'c P = {x | x, 20, Vie M} .
(i1) For every io € Imin s the procedure MINSET constructs a
point x with ii < 0 and ;1-2 0, Vi ¢ (R I) vhere R and I

are the current Zets of step 4; since (RUE) :)1min by
construction, one has ;1-2 0, Vie L , - {10}.

(11i) The set 1 (# @) indi:ates that the given system (1) is
degenerate, i.e., that some k-dimensional faces (0 < k < n)
of the polyhedron P are contained in more than (n=k)
hyperplanes X, = 0, 1 ¢ M; this situation does not affect

the minimal property of 1 but the identification of the

min’
element 3 of Io is important in order to eliminate redun-
dancy of the faclal dacomposition. (See section 3.5).

(iv) Property 3: 1In the non-degenerate case (Io = ¢),Ehe mini-

mal set is unique.

Pioof: For every i € (M-I) one has x, > ¢ >0, ¥x ¢ P since Io = ¢

i
by hypothesis; this 18 a well defined criterion which divides

M uniquely in two disjoint subsets (M«I) and I.

&.

Section 2: The Faces of P .

t the beginning, one applies MINSET to the system (1), that is, to
the given polyhedron P in order to determine the set I (degeneracy will
be considered separately ia 3.3). But from the theory of polyhedral
sets, one knows that every face F of the polyhedron P is a polyhedron.
Thus, MINSET can be applied to the faces F of P as well, In particular,

to the faces F(il), F(il’iz)"" where

F(il) ={xeP] X, = 0, i, ¢ 1.}, with a correspoading minimal set i,)< 1,

~

F(ig,i,) = {x ep| X, =x, =0,4;, ¢, 1i,c¢ 1(11)c T}t I(il,iz)C (i)

BCCa0ee
A sequence of faces F(il), F(il,iz),...,F(il,...,iq) is generated

with the following properties.

Property 3: For k + 5 < n , one has

i)

I(il,iz,...,is) 2 I(il,iz,...,i

ooyl
s’ s+1?"°"’ n-k

aad F(il,iz,...,is) = F(il’iz’""is’js+1""’in-k) .
Proof: by construction,

In conclusion, one sees that repeated use of tne procedure MINSET,
leads to the construction of an aborescence with initlal node ? (n~dimen-
siwonal face) itself; at the level below, one finds all the (nel)-dimen=-
gional faces of P (one for each i ¢ I); then, below, tlhie faces of these
faces (i.e., the (n=2)-dimensional faces of P) etc.,... At every node

(i.e., face F(il,...,iq)) the minimal set I(il....,iq) determines the

7.

branches (how many and which) leading to the level below. At the lowest
level, one ultimately finds the vertices of P. {
The next section praesants an algorithmic conestruction of this arbor-

escence.

———r

L -cler MAEES

Section 3: An exhaustive arborescence for the faces of P .

3.1 The following procedures TREE, FACE2D, SIMFACE and BACKTRACK generate
one by one a list of n-arrays called VERTEX = {il,iz,...,in} .
In this version, the algorithm requires the storage of
- the arrays COL {t; 1 , t=1,2,...,n which have at most
m components.
- the n~arrays N , M and MI , J
- the 'dynamic'" arrays (at most m components each):
1 =1I[0;1, I[1; J,ees,ifn=1;1 .
-~ the current linear prcgramming tableaux A , which is at
most (irrm) by (m+l).
TREZ: 1 < Set t =1 and J =@ ; the initial tableauv stems
from (1); I{0;] = To ; MI[0] = number of elements in 1

M{ 0]

fi

1

Set COL [l}: = first column of the original watrix A

(corresponding to the first non-basic variable xj)

Set N[1]: = j = ron-basic index of the first column

Delete the first column from the matrix A , to
obrain the ament matrix A (which is thus an M1[0]

by n array)

2 1f (n-t) = 2 ther use FACE2D and go to BACKTRACK.
3 Apply MINSET to the current tableau A : 1{t;]

- Set MI[t] = number of elements in the set {t;]

- Set M[t] =0
¢ 1f Mi{t] =1 , spply SIMFACE and go to BACKTRACK.

5 1f M{t] =MI[t] , go to BACKTRACK ;

lllllIlllIiilllll........-....i.-...-.............-____.nm__‘A“

TR e TR TR R

o mcmmer !.!

9.

6 - Set M[t]: =M[t] + 1 ;

7 Take the M[t]th component j of the array
1[t;] i.e., j: = Ilt;MIe]];

8 Make xj non-basic (if it is not already)

preserving primal feasibility.

When pivoting is required, one must transorm also the
colums stored in the arrays COL[s] , for all s,
1 <+ <t ; this can be done by forming a full tab~ }

leau TAB = {COL[1}, CcOL[2),...,COL[t],A} ; TAB

is then transformed by pivoting (pivot in A) and the
new columns 1,... are stored again in COL{1},...,COL|t] .

- Set t:=t+1;

- Set N[t]: i

9 - Set COL[t}: column of the current tableau A correspond-
ing to the non-basic index j
- Set A = matrix obtained from the current matrix A by
deleting the column j ;
10 Go to step 2.
BACKTRACK:
11 Set t =t -1.
12 1f t= -1 then STOP!

13 Adjoin the column COL[t] to the current matrix A ,

thus forming a new (augmented) matrix A .

3.2 We need the following special procedures in the above algorithm.

Two-dimensional faces: FACE2D.

Two-dimensional faces of the convex polyhedron P can be treated
separately, because a straightforward sequence of pivots determines

all their vertices and consequently also their l-dimensional faces.

FACEZD:
1 Find a basic feasible solution, i.e., two non-basic indices
1203
- Set R = I[{n-2;] and J = @
2 Register the corresponding vertex characterized by the non-

basic index set VERTES = {N[1}, N[Z]...-,N[n-Z],nl,nz}.

3 Choose a non-basic index j = n,or mn, ;

- if both n, and n, belong to J then STOP!

1 2

4 Set J:=Ju {j} and R =R - {j}

5 Find the basic index 4§ ¢ R which is to leave the basis
when the non-basic index j enters the basis (in order

to maintain primal feasibility).

6 Pivot (on aij and go to 2.)

3.3 Simplical faces: SIMFACE

when the minimal set I of a k-dimensional face F consists of
(k+1) elements, F is a simplex and its (k+l) vertices can be

immediately determined, without resorting to subfaces of F .

1’j2’°'°jk+1} »

)y = {3

Let I =I(i,d,eeesd o)

3.4

11.

SIMFACE: 1 Find a first basic feasible solution, i.e.

-

k non-basic indices Dy see0,n, €1 and

store VERTEX = {N[l],N[Z],...,N[n-k],nl,...,nk}

2 For each i =1,...,k , gencrate a new non-basic
array VERTIEX from the one obtained in step 1l

above by replacing the index n, by the last

i

remaining element o ¢ 1 . Clearly n new

arrays VERTEX are generated in this fashion.

The procedure SIMFACE only determines the vertices of F, but if all

substances of F are desired, they can be obtained in a siwilar manner.

The algorithm TREE, BACKTRACK, FACR2D, and SIMFACE determines a

non-redundant list of non-basic indes sets VERTEX which contains

all the vertices of P.

Proof:

The procedure TREE generates all sets of indices

N = {N{1],N[2],...,N[t]} such that N[i] & I[i;] ,
for all 1 <i <t and for all t, 0 <t <n-2;

for all £t >0 ; for t =n-2 the procedure FACE2D
takes over and finds all vertices in that face ;
occasionally for 0 < t < n-2 , the procedure SIMFACE

will do the same. Hence all hasic feasible solutions

of P with non-basic variables in the minimal set

1 (of P) are generated because by construction,

12,

I =1I[0; 1 21[1; 1> ...21{t;] always holds true.

Furthermore FACE2D and SIMFACE determine only basic
feasible solutions. i

Moreover this list is non-redundant, because step 6

of TREE guarantees that the same index set N is

generated once and only once. q.e.d.

3.5 Degeneracy: When some faces (or vertices) of P are degenerate,
it may happen that geometrically jdentical faces of P

are algebraically represented by different sets N :

such faces will then appear more than once in the arbor-
escence (but each time with a different index set N ,

i.e., for instance
{x| xe Fl} ={x| xe Fz}

with F] = Flpsigseensiy)

Fy = F(psdpseensiy)

. C s [s .
and {11,12,...,1q} {31,32,...,Jq}

This redundan-y is due to degeneracy in the arbor=
escence, i.e., to the fact that some faces F(il,...,iq)
are "over-determined" in the sense that 3i ¢ {il,...,iq}
such that F(il,...,iq) c {x [X, = 0}.

Such an index i is identified by the procedure

MINSET and one has

1 ‘ I(il’ono,lq) but i € Io(il,occgiq)o

e vy

130

Hence all the characterizations by different index gets
{il,...,iq} of the same face F can easily be obtained
from the index set D = {11,...,iq} v Io(il) v 10(11,12)\4”,

...\;Io(il,...,iq); One has by definition

Dp={i] x, =0, ¥ eFlcM

and AfE(F) = {x | x; =0, vi¢e DF}. The corresponding

linear system

Xx.=a., + ¥ a ,x,=0, ieD cM
i i jeN ij’) F

has rank q (< n); it 18 gver-determined in the sense that
contains dF > q linearly dependent equations (dF = pumber
of elements in DF) whenever one of the sets Io ¥ 8.

Every set of q linearly independent rows represents
a characterization of F which appears in the arborescence
and causes redundancy; however, because the main subroutine
TREE generates faces in a lexicographically increasing
order, redundancy can easily be eliminated by the following
additional bookkeeping:
D1l - Generate the first (lexicographically) degenerate

representation, i.e., the next redundant node to be

encountered by the procedure TREE;
D2 -~ Store the lexicographic order rank r of that node;
D3 - When BACKTRACK attains the order r (terminate that

redundant branch and) go to Dl in order to update r; 3

_ 4 ny

_,*__,:j—w——;“ .] - o i) ’ e s
e

14.

Note that the degeneracy sets DF are generated in increasing
lexicographic order; and the step D1 does not require any
additional computations; moreover step 3 does eliminate redun-
dancy because the degeneracy sets newly discovered by the
procedure TREE all belong to higher orders than the current '

one (i.e., one never finds out in a later phase that some

previously enumerated faces were redundant),

15,

Section 4: Some applications of a Facial Optimization Method (FOM) for
linearly constrained mathematical programming.

The Facial Optimization Method (FOM) is of the branch and bound type,

where the branching procedure is generated according to the facial structure
of the constraint polyhedron P ; in this manner primal feasibility is
always present in all the nodes. It should be noted that the arborescence
of section 2 still contains some useful flexibility in the choice of the
order in which the variables are to be "blocked" at value ¢ (as non-
basics); thus the usual preference rules of branch and bound algorithms also
apply here. Since in every way the facial arborescence resembles other
branching trees, the usual bound estimators also apply; clearly the effici-
ency of the facial approach as compared to other branch and bound algorithms
depends on P eand its structure,

In a vertex to vertex optimization method, where additional properties
must be checked as in 4.1, one wust be able to identify all
neighbouring vertices of a given vertex X » 1.e. find all extreme rays

of 8 (degenerate) cone, Consider a basis at X

X, =x, + £ a, x>0 ,9VieM)
i i jeN 1§ 7§ ’

with non-basic set NC M . For the rays stemming from x , only the
planes that are tight at x are of interest, i.e.

M ={t] 1eN, or X =0JCM

The problem of finding the extreme rays of the cone C

c=" x| x; 20, Vie M'}] 18 equivalent to that of finding all extreme

points of the (n-1)-dimensional polyhedron P={xecC| = X

16.

1}; the
jeN

corresponding system (1) can be obtained in one pivot from (4). 1In [3]

a search method of this type is developed for concave programs.,

4.1

4.2

Zero-one programming: Here the polyhedron P 1is a subset of the unit

cube; hence every feasible integer solution is a vertex of P .

Starting at the L.P. optimal solution X , @ branching process which
determines (not necessarily explicitly) all neighbours of X , then all
neighbours of these neighbours, etc....will terminate when an integer
vertex has been found and all neighbours generated so far furnish a
lesser value of the objective function. Depending on the structure of
P , this branch and bound algorithm can use efficiently the facial
structure of P , particularly for polyhedra P where x always has

an integer neighbour,

General quadratic programming: Suppose we want to optimize (mximize

or minimize) a quadratic objective function (not necessarily convex or
concave) on a polyhedral set P ., 1t can be shown that the candidates
for the optimum are either vertices of P or (more generally) optimal

solutions of the convex quadratic problems
minimize £(x) , s.t. x € F

where F is a k-dimensional face of P such that the function f
remains convex on F .

The facial decomposition method leads in this case to an efficient
algorithm for gereral quadratic, linearly constrained problems which
is presented in [4]. “

0f course POM can be applied, conceivably, to many other special

optimization problems over polyhedral sets (such as concave programming,

17.

general non-linear programming, etc....) but it is not clear at this
point where and when it furnishes an efficient approach in such
general context.
Conclusions

The algorithm for generating all vertices of a polyhedron P
presented in this note develops a facial arborescence which may be con-
sidered minimal, since every node is generated exactly once, and corre-
sponds to a feasible face on the boundary of P . In particular, one
can generate in this arborescence the set of vertices of P (i.e.
feasible basic solutions) without generating any other basic solutiom,
as is the case for methods [1] and [2]. One may argue that the
additional pivoting, necessary for the construction of the minimal
sets outweights this theoretical property; in view of the exponential
growth of the face structure, however, this should not be expected
to hold true in the general case. A program requiring a modest
amount of storage (i.e., where practically only space for A is
needed) is being implemented. When degeneracy occurs, a subtree
of the facial arborescence can be eliminated by additional bookkeeping.
The remaining arborescence is in one to one correspondence with the
k-dimensional faces (n > k > 0) of P for all k. Precise comparisons
in this context are not easily formulated mathematically and experi-

mentation is currently under way with randomly generated, non-

structured matrices A of a size up to 20 by 10,

{1]

2]

{31

(4]

REFERENCES

Balinski, M.L., "An Algorithm for Finding All Vertices of a
Convex Polyhedral Set", J. Soc. Indust. Appl. Mathematics,
Volume 9, No. 1 (1961).

Motzkin, T,S., Raiffa, H., Thompson, G.L., and Thrall, R.M.,
"The Double Description Method", Contribytions to the
Theory of Games (Vol. 2), H.W. Kuhn and A.W. Tucker (eds.),
Annals of Mathematical Studies, No. 28, Princeton Press (1953).

Burdet, C.-A., "A Combinational Approach to Linearly Constrained
Concave Programming', Carnegie-Mellon University, Graduate
School of Industrial Administration, W.P. 75-70=-1.

Burdet, C.-A., "General Quadratic Programming', Carnegie-Mellon
University, Graduate School of Industrial Administration,
W.P. 4l-71=2,

